
CELLULAR CONVECTION IN A VISCOELASTIC FLUID 

F. A. Garifullin, F. I. Zapparov, 
N. Z. Mingaleev, and P. A. Norden 

UDC 532.135 

The pattern of supercritical motions in convection processes has aroused the interest 
of many researchers [1-4]. The fundamental theoretical results on the preferred mode near 
the critical point may be generalized as follows. 

i. Motion driven by a surface-tension gradient generates hexagonal cells [i]. 

2. In buoyancy-driven convection the stable mode comprises rollers if the physical prop- 
erties of the fluid are independent of the temperature [2]. 

3. In buoyancy-driven convection for fluids having temperature-dependent physical 
properties the cells are hexagonal in the interval of Rayleigh numbers close to the critical 
[3, 4]. These hexagons transform into rollers with a further increase in the supercrlticality. 

In regard to the influence of elasticity of the fluid on the mode of convective motion, 
this problem has been totally ignored. Below, for a more complete treatment of the physical 
properties of the fluid we consider a temperature-dependent viscosity. For the rheological 
relation we adopt the Maxwell model 

Pi~-} -%6Pj6 t  = ~uu, 

in which uij is the strain-rate tensor; ~, viscosity; x,, relaxation time; and 

5Pi5 8Pi. i 8Pij Ou~ Ou i 
- + - 

We consider an infinite horizontal layer of the fluid, heated from below. We assume that 
the temperature dependence of the density and viscosity is linear. 

The dimensionless convection equation has the matrix form 

(I  o ~ov~ / I  o q = _ ( 1  ~ _ ) o P  

q- T Pr JT- 6io8~a F Ra a ~ Y + cr  Ra T - -  

where the following matrix notation is used: 

vj , 00 Du---- 
= ~ = Pr 6~j Prv'-6ij 

0 0  ; 
v i i =  0 u o c = I - - S i ~ :  

I is the unit matrix; 
auij ~uj 8ui. 

F = hSyPr/Ra is the dimensionless coefficient of the temperature dependence of the viscosity; 
T, dimensionless relaxation time; Ra = agAh~z/~, Rayleigh number; Pr = ~/z0, Prandtl number; 
and 8, temperature perturbation. 

To solve the nonlinear equation by perturbation methods we expand it with respect to a 
small parameter according to [2]. The expansion of the Rayleigh number 

Ra = Ra(~ + eRa(t)+e2Ra(2) + . . .  (2) 

specifies the small parameter, and Ra (~ is the critical Rayleigh number. 

(i) 

Kazan. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. I, pp. 
133-136, January-February, 1981. Original article submitted December 7, 1979. 
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Substituting the expansion (2) into (i), we obtain equations for the first three ap- 
proxlmations, which we omit in view of the cumbersomeness of the expressions. According to 
[2], from ~hs conditions for solvabillty of successlve-approximatlon equations, assuming 
a comparatively small relative variation of the viscosity [5], we obtain an equation for 
Ra(*): 

Pr Ra(1)O(1)us') = < v?)'' "Vf"/Ov(~1>~ --  r RaCO>u?); 0 (O(1)ul)))0~ 

I ( t ) '  (1) 0 U(1) i tk Ox k 
_ rRa<0:z I u~ u~ ~ ,~ - u<1>'u <1> ~ 

~/o), (~> oo (I) < a'~ ~) o%(i I) k 
zPrn~, ~a -at --2Przc v(il)" ox a a:ciozA/ 

, a~(~> ~.(i> o.?>'_~u(#> 1, - -  --  9/l  (1) X ,;i O ~i  U~1)'~3 

where  0 ( i ) ,  u ( i ) , j  v j  a r e  t h e  c o r r e s p o n d i n g  terms o f  t he  e x p a n s i o n ,  t he  a n g l e  b r a c k e t s  d e s i g -  
n a t e  the scalar product [2] 

# ~ (0) ' " <v~, vk> = Pr 0 ~  + na u~uh, 

the overbar signifies averaging over the entire layer, and 
# 

Ov~ Ov k 
= o .  

Assuming that x and r are small in the third approximation, in accordance with [5], for 
Ra (2) we obtain 

, O v ( ~ ) \  Pr Ra(S>0(1)'u~1> /, (1)t OV~2)\ Ro(1)0(1)tU(2) / ,(1) . (1) u~i  h = \ - h  , - - ~ - / - - P r  ~ 3 +\-, ,~'k ax k / .  

According to [5], we write 

Ra - -  H a  (~ = A R a  = R a (  1> -4- R a  (2>. ( 3 )  

As in [3-5], we investigate motion consisting of two Fourier components. The vertical 
velocity component has the form 

u~ 1) = An/(x3) cos kx ,  cos l x ,  + Ao~./ (x~) cos 21x,, k ~ -q- lz = 4 l '  = a' .  (4) 

For u(a)we have 

u~ 2> = ~ kuFa t  (x.)  cos i k x  1 cos/lx,. (5) 
iy 

S u b s t i t u t i n g  (4) and (5) i n t o  ( 3 ) ,  we o b t a i n  t he  a m p l i t u d e  e q u a t i o n s  

(g- K0 A11 = EAn -- AAnAo2 + BAnAoz- RoASt -- PAnA~o~; (6) 

1 2 t ,A tr lIA~o~- 4_ nA~ h (K -- Ki) Ao~ = EAos -- T AAn + T BAn -- T ~ n o2. (7) 

The coefficients K, E, A, Ro, R,, and P coincide with the corresponding coefficients of the 
amplitude equations for the Newtonian case in [5]. Equations (6) and (7) differ in the pres- 
ence of the additional coefficients K~ and B. 

We consider the two free boundaries of the layer. 

/ (=) = = 

where a~*) is the critical wave number. 

Direct calculations show that 

For this case we have 

I i --~-<zg~T, (s) 

�9 /. <i>' a,)~> :v~> \ 0 I/, 3 I ~ ~_(0>~ (' r f , z f .  
-112J L a 

_ 7/,~i ..L ! 1/,1" ( , ~ + 2 # I " -  2aV s + z~ aVI'DI--/'/19I" - - T t / , s  _ 

a"' f'/" - -  f],/,, _~ jf,2/,, - -  3a~]Z] ' -1- If"D/- a~f~Df)] dx,, 

y l / ~ f D S / d  z, D =  i - -  1 0 ~ k l =  �9 Pr Ra(~ 2 -i/~ "a ~ Oz~" 
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Calculations for f(xs) in the form (8) yield 

B =--9~5FRa(0)v, 

k~ = 22.21~PrRa(% 

According to [5], we define t h e  p a r a m e t e r  • 

ARa/[A~;hs 

We denote 

A = rRa(~ E = P r A R a E ~ ,  B = --FRa(~ B~ = 9,5Ra(~ 

From t h e  steady-state conditions for (6) and (7) we infer that the transition between the 
hexagonal and hexagonal + roller states (the plus sign implies the possible existence of both 
solutions) is observed for 

/~i Pr (AI+Bi) s. (9) 
~i = 4 (2R o - -  Ri)s Ba (~ Ei ' 

from the hexagonal + roller state for 

X~ = 4R~ + Ri 

Ri Mi. 

It is evident from (9) that the elasticity of the fluid increases x ~ and~ a, where • > g I. 

Consequently, the presence of the relaxation time increases the domain of supercritlcal- 
ity of the existence of hexagons. This conclusion is qualitatively supported by the experi- 
mental data of [6], in which a more ordered hexagonal convective structure is observed in 
elastic fluids than for the same degree of supercriticallty in a Newtonian fluid, i.e., in 
elastic fluids hexagons are found in a domain of supercritlcality relatively farther-removed 
from the upper limit of their instability. 
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